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The effect of distributions of nonuniformities in the diameter, heat capacity, and material 
density of small spherical particles on the properties of a dust-gas suspension passing 
through a normal stationary shock wave is studied numerically. It was found that the gas 
temperature is practically independent of the size distribution of the dust particles. The 
suspension pressure, however, is very sensitive to the size distribution. It rises very sharply 
when the suspension contains mainly small particles. A distribution in the specific heat 
capacity of the solid particles results in a minor effect on the velocities and the pressure 
and in a pronounced effect on the temperature of the solid particles. A distribution in the 
material density of the solid particles affects both the velocities and the temperatures of 
the solid and gaseous phases. 
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Introduction 
The interest in the gas-dynamic behavior of a gas-particle 
suspension grew in the past three decades due to its application 
in many engineering problems. Some typical examples are 
metalized propellants of rockets, jet-type dust collectors, and 
blast waves in dusty atmospheres. In addition, mixtures with 
gases heavily laden with particles occur frequently in industrial 
processes such as plastics manufacturing, flour milling, coal- 
dust conveying, powder metallurgy, and powdered-food 
processing. General descriptions of such flows can be found in 
Soo, t Marble, 2 and Rudinger. 3 

The major differences between the flow fields which are 
developed behind a normal shock wave in a dusty gas and a 
pure (dust-free) gas are illustrated in Figures la, b for the 
temperatures and the velocities, respectively. When a steady 
pure gas encounters a normal shock wave, it experiences a 
sharp (almost discontinuous) change in its thermodynamic and 
kinematic properties. This sudden change is shown in Figure 
1 to occur between (0) and (1). The thickness of this disturbance, 
lf, is only a few mean free paths of the gas atoms or molecules. 
Beyond (1) the gas properties remain constant (solid lines in 
Figures la, b), provided the gas conditions at (1) are not 
sufficient to excite the internal degrees of freedom of the gas. 

If, however, the gas is laden with solid particles, then the 
suspension which was originally at a state of thermodynamic 
and kinematic equilibrium, ahead of the shock front, is suddenly 
changed into a nonequilibrium state because the solid particles, 
due to their size as compared with If, do not experience any 
noticeable change in their properties upon moving from (0) to 
(1). Thus, at (1) the gas has a much higher temperature than 
the dust, Tg >> Tp, and a much lower velocity, u << v (u is the gas 
velocity and v is the velocity of the solid particles). Morgenthaler 4 
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indicated that this is true even if the particle diameter is as 
small as 0.1/tin (for shock waves in air at nearly standard 
conditions, where the mean free path is about 0.066/tm), 
Therefore, the particles are not influenced by the initial distur- 
bance, and the gas properties at (1) can be safely assumed to 
be identical to those of a pure gas with the same initial 
conditions. 

Far downstream of (1), i.e., at (oo) in Figure 1, the gas and 
the solid phases reach a new state of thermodynamic and 
kinematic equilibrium via momentum and energy exchange. 
Theoretically all shock waves in dusty gases are infinitely thick, 
since equilibrium is approached asymptotically. However, it is 
a common practice to assign to the shock wave an effective 
thickness which is defined by a requirement that the suspension 
properties come close to their equilibrium downstream values. 
It was shown by Gottlieb and Coskunses 5 that the suspension 
equilibrium properties (at infinity) can be calculated from the 
usual normal shock wave relations, provided that the usual 
pure gas parameters y and R (the specific heat capacities ratio 
and the specific gas constant) are replaced by effective values 

and /~ which solely depend on the initial conditions of the 
suspension. This effective thickness is known in the literature 
as the relaxation zone, for it is analogous to the relaxation zone 
in pure gases where the internal degrees of freedom are excited. 
The extent of the relaxation zone strongly depends on the 
momentum and heat transfer mechanisms which enable the 
solid and the gaseous phases to reach a new equilibrium state. 
The flow behavior in the relaxation zone was studied by many 
investigators. The pioneering works of Carrier, 6 Kriebel, 7 and 
Rudinger a verified the existence of this relaxation zone and 
identified the parameters affecting it, namely, the solid particle 
diameter D, its heat capacity C, its material density a, and 
the loading ratio q. Igra and Ben-Dor 9 compared various 
correlations for the drag coefficient C D and the heat transfer 
coefficient Nu, and pointed out their effect on the extent of the 
relaxation zone. In addition, they studied the role of thermal 
radiation heat transfer between the two phases and showed 
that it can be neglected when the incident shock wave Mach 
number is smaller than 5. 

152 Int. J. Heat and Fluid Flow, Vol. 10, No. 2, June 1989 



shock front 

If 

/ /  
I . ~ /  . . . . .  gaseous phos 2 

(0) (I) (a) 

shock front 

L uvv 

If 

u 
X 

- -  pure gas 
. . . . . . . .  solid phase 
. . . . .  gaseous phase 

(0) ( I }  (b) 
(=) 

Figure 1 Shock wave structure in pure and dusty gases 

In all the above-mentioned works, as well as in many others, 
the gaseous phase was assumed to behave as a perfect gas. This 
assumption was recently relaxed by Ben-Dor and Igra 1° and 
Igra and Ben-Dor, 11 who solved the flow field while accounting 
for real gas effects. Dissociating nitrogen was the gaseous phase 
in the latter work and ionizing argon in the former. 

The assumption that the solid particles are inert, which was 
also adopted in most of the published studies, was also relaxed 
by Elperin, Ben-Dor and Igra, 12 who solved the flow field of 
an oxygen-carbon suspension passing through a normal shock 
wave, behind which the carbon particles reached their ignition 
temperature and burned out. 

In the present study, another commonly used assumption 
concerning the solid phase is relaxed. It has been a common 
practice to assume that the solid phase consists of spherical 
particles of identical diameter D, identical material density a, 
and heat capacity C. In reality, however, this is not the case, 
for the particles comprising the solid phase do not have, in 
general, a uniform size even though they might have the same 
physical properties (i.e., a and C). Furthermore, there could be 
cases in which the suspension consists of different solid materials 
(i.e., different values of tr and C). 

The purpose of this study is to numerically investigate the 
influence of the above-mentioned solid phase nonuniformities 
on the flow field which is developed behind a normal shock 
wave. 

In the following, the basic assumptions upon which the 
present model is based are given. The assumptions are followed 
by the governing equations and the numerical results arising 
from their solution. 
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Theore t ica l  background  
Assumpt ions  

The assumptions upon which the present model is based and 
their implications are as follows: 

1. The gaseous phase behaves as an ideal gas. Thus, the 
equation of state of the gas is P =  PsRTg. Note that it is not 
assumed here that the gas is calorically ideal. Alternatively, 
the dependence of both Cp and C~ on the gas temperature 
is accounted for. This has not been done in previous studies, 
where both Cp and Cv were assumed to be constant. 

2. All solid particles are rigid, chemically inert small spheres 
uniformly distributed in the gaseous phase. Thus there is no 
heat addition or reduction due to chemical processes between 
the solid and the gaseous phases. Furthermore, Re and Nu 
are based on the particle diameter D. 

3. The volume of the solid phase in the suspension can be 
neglected. Thus the momentum and energy exchange between 
the solid particles can be ignored. 

4. Aside froln momentum and energy interactions between the 
gaseous and the solid phases, the gaseous phase is considered 
to be a perfect fluid; i.e., no other viscous or conduction 
effects are considered. 

5. The solid particles are too large to experience any change 
in their thermodynamic and dynamic properties upon their 
passage through the shock front. In addition they are also 
large enough not to experience Brownian motion. Thus, the 
partial pressure of the solid phase can be neglected. 

6. The solid particles are small enough to satisfy the condition 
Bi<0.1, where B i is the Biot number, Bi=hr/kp (h is the 
coefficient of heat transfer, r is the radius of the particle, and 
kp is its thermal conductivity). Thus the temperature within 
the solid particles can be assumed to be uniform. 

7. The weight of the solid particles and the buoyancy forces 
experienced by them are negligibly small in comparison with 
the drag forces acting on them. 

8. The heat capacity C of the solid particles is constant. 
9. Ahead of the normal shock wave the suspension is at a state 

of thermodynamic and kinematic equilibrium; i.e., Uo=Vo 
and Tg o = Tpo, where u and v are the velocities of the gas and 
the solid particles, and T~ and Tp are the temperatures of the 
gas and solid particles, respectively. 

In addition, it is assumed that the flow field under consideration 
is one-dimensional and steady. 

Governing equat ions 

The considered suspension is composed of n + 1 phases. One 
phase is the gaseous phase. The remaining n phases are all solid 
phases. Each of the n solid phases consists of identical particles. 
However, each one of the n solid phases differ from all the other 
solid phases in at least one of the following properties: the 
diameter of the solid particle D, its material density tr, or its 
heat capacity C. 

Based on the foregoing assumptions the governing equations 
describing the considered flow field are 

Continuity of the gaseous phase 

d 
dxx (psu)=O (1) 

Cont inu i ty  of  the i th solid phase 

d 
dx (ppiVi)=O i=  1 to n (2) 
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Conservation of momentum of the gaseous phase 

d 
(pgU2 q - P ) = ~  FDi (3) 

dx 
Conservation of momentum of the ith solid phase 

d 
d x  (PpiV2) = - FDi (4) 

Conservation of energy of the gaseous phase 
n n 

d [CpTgq_½u2] = Z  Qp/q-Z FDiVi (5) 
pgu dx 1 1 

Conservation of energy of the ith solid phase 

d 
ppiVi d x  [ Ci Tpi -+- lV2"] : -- Qpi -- FDil)i (6) 

Equation of state of the gaseous phase 

P = p , R T ,  (7) 

In the above equations p,, u, Tg, and P are the density, velocity, 
temperature, and pressure of the gaseous phase, respectively, 
Ppl, Vi; and Tp~ are the spatial density, velocity, and temperature 
of the ith solid phase, respectively. Note that the material 
density of the solid particles is a i, which can be related to the 
spatial density Ppi via the relation ppi=niVpfll where n i is the 
number density of the ith solid particle and Vp~ is the volume 
of a single ith solid particle. According to assumption 5, the 
partial pressures of all the solid phases are zero. For  this reason 
P is not only the pressure of the gaseous phase, but the pressure 
of the suspension as well. Cp and R are the specific heat capacity 
at constant pressure and the specific gas constant of the gaseous 
phase, and Ci is the heat capacity of the particles of the ith 
solid phase. FD~ is the drag force per unit volume exerted by 
the gaseous phase on the particles of the ith solid phase, and 
Qpi iS the heat transferred per unit volume from the particles 
of the ith solid phase to the gaseous phase. 

The drag force FD~ can be calculated from 

FDi = 3 p,ppi(V , -- u)lv i -- u ICDJD ,a i (8) 

where Di is the diameter of the solid particle, a~ is their material 
density, and CD,, the drag coefficient, 

CD, = 0.48 + 28 Re/- 0.85 (9) 

The slip Re number for the ith solid phase is 

Re, -p*lvi-ulDi (10) 

where the dynamic viscosity #, depends on the gas temperature 
Ts. 

The transferred heat Qpi can be calculated from 

Qpi = 6hiPpi(Tpi- Ts)/Diai (11) 

where hi, the coefficient of convection heat transfer, can be 
obtained from 

hi = kgNui (12) 
Di 

Nui is the Nusselt number of the ith solid phase: 

Nui=  2 +0.459 Pr °'aa Re °'55 (13) 

where Pr is the Prandtl number 

P r -  I~sCp (14) 
k s  

and k s is the thermal conductivity of the gaseous phase. 

The above set of governing equations consists of 4+3n  
equations (conservation of mass, momentum, and energy for 
the gaseous phase, equation of state of the gaseous phase and 
conservation of mass, momentum, and energy for each of the 
n solid phases). The number of the unknowns is also 4+3n  
(pg, u, T,, and P for the gaseous phase and Ppi, vl, and Tpi for 
each of the n solid phases). Thus the set of governing equations 
is solvable in principle. 

N u m e r i c a l  a p p r o a c h  

C o m p u t e r  code  

There are many computational packages capable of numerically 
solving differential equations. The one chosen for solving the 
differential equations governing the problem at hand is the 
IMSL (International Mathematical & Statistical Libraries) 
package, which can run on a CDC Cyber 840 computer. The 
IMSL package contains three computer codes for solving differ- 
ential equations with given initial conditions: 

DVERK--based on the Runge-Kutta method, and recom- 
mended for cases where high accuracy is not required 
and where the derivatives can be simply calculated. 

DGEAR--based  on the predictor-corrector method. Although 
it results in poor accuracy, it is preferable to 
DVERK when the calculation of the derivatives is 
difficult and hence expensive. 

DREBS- -based  on the extrapolation method. Preferable 
when high accuracies are required and when the 
derivatives can be calculated in a relatively simple 
and inexpensive way. 

The DREBS code was adopted in the present study. This 
code performs a triple check of the obtained error between each 
two extrapolation steps. Since the DREBS code is limited to 
the case where each derivative is independent of the other 
derivatives, the governing equations need to be rearranged. The 
rearrangement of the governing Equations 1 to 7 results in 

dZg ~ 1 (  opi'l '-fDivi FDIN3 x) 
_ u 2 - R T J  (15) 

dx p,u( C,, Ru2 .'~ 
u2 - R Tg/ 

rl 
~, FDi -- pgR d T z 

du 1 dx 
- -  - ( 1 6 )  
dx u - R T z 

p g - -  
U 

dP /dT ,  T, du)  (17) 
d x = O ' R ~ d x  u dxx 

dpg_pg du (18) 
dx u dx 

dTpi_ Qpi (19) 
dx CippiVi 

dvl FDi 
- ( 2 0 )  

dx PpiVi 

dppi _ Ppi dvi (21) 
dx vi dx 

Note that although Equations 15 to 21 do not reflect the 
dependence of the gas specific heat capacity on its temperature 
since a space gradient of Cp does not appear, the value of Cp 
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was calculated at any position x according to the temperature 
at that position. This procedure assumes that the space gradient 
of Cv is neglectable. 

Initial conditions 

As mentioned earlier the properties of the solid phases do not 
change when they pass through the normal shock wave. Thus, 
the solid particles velocity v~, temperature Tp~, and spatial 
density pp~ immediately behind the shock front remain identical 
to their appropriate values ahead of the shock front; i.e., 

(vih =(V0o (Tpl)l =(Tpi)o (Ppi)l =(Ppi)o (22) 

Furthermore, the multiphase suspension is assumed to be in 
thermodynamic and kinematic equilibrium ahead of the shock 
front; therefore (Vl)o =Uo, (T,i)o = To, and (Ppi)o =~/iPgo, where 
r h is the loading ratio of the ith solid phase. 

The properties of the gas, on the other hand, change almost 
discontinuously across the shock wave. The gas properties 
immediately behind the shock front can simply be calculated 
from the normal shock jump conditions; i.e., 

P1 27M02 7 - 1  (23) 

Po "~+1  7+1 

Ps,_ (?+ 1) Mo2 (24) 
Pso (~ - l )Mo  2+2 

T,o \ 2 

M l = ( M 2 + ~ ) / ( 7 2 ~ 7 _ l  M2--1 ) (26) 

ul = M I ~  (27) 

M o and M~ are the flow Mach numbers immediately ahead 
and behind the shock front. 

Final conditions 

As mentioned, the extent of the relaxation zone in the case of 
a dusty gas is infinitely long for the equilibrium values are 
approached asymptotically. However, as shown by Gottlieb 
and Coskunses, s the suspension equilibrium properties at 
infinity can be calculated very simply by using Equations 23 
to 27 and replacing ? by 9 and R by/~. In this approach the 
multiphase suspension is assumed to be a single-phase gas 
having new values for ), and R. Based on Gottlieb and 
Coskunses, 5 the relations for 9 and/~ are 

9 = £r/iCi + (1 - £rh)C v (28) 
£thCi + (1 - £th)C ~ 

/~= (1 - £rh)R (29) 

where 

~/i - P P ~  (30) 
~-,Ppi + Pg 

Note that in many papers the loading ratio is defined as 
rl* = PpJPs" Thus, the two different definitions can be related by 

r / z - -  (31) 
E~/* + 1 

(It is clear from these relations that if the total loading ratio 
£r h and heat capacity C~ are constant, then 9 and/~ are constant 
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and hence the equilibrium properties at the end of the relaxation 
zone are identical.) These new values (i.e., ~ and/~) yield a new 
speed of sound a, which satisfies 

?t o < ao = (~, R Tso) 1/2 
Thus the flow Mach number ahead of the shock wave becomes 
-~to > Mo. By replacing y, R, and M o in Equations 23 to 27 
with 9,/~, and Mo, one can calculate the equilibrium properties 
of the suspension at infinity. 

The knowledge of the suspension properties at infinity (i.e., 
the equilibrium final conditions) can serve as an excellent means 
of checking the reliability of the numerical results since they 
should be approached asymptotically. 

Since the equilibrium conditions at infinity are known 
a priori, the integration was terminated when the suspension 
properties came as close as 2% of their corresponding equilibrium 
values. The distance where the velocities reached this condition 
is called the kinematic relaxation length Iv, and the distance 
where the temperatures reached this condition is called the 
thermal relaxation length l T. These two relaxation lengths are 
in general different. 

Physical properties of the various phases 

The gaseous phase was chosen to be nitrogen. Yun, Weissman, 
and Mason 13 have calculated the transport properties of 
nitrogen and presented their results in a tabular form for both 
#g and k r A least square polynomial fit to their results yields 
the following expressions for k s and Ps: 

k s [W/(mK)] = 1.386 x 10- 2 + (5.311 x 10- S)T s 

-(9.822 x 10- l°)T 2 

and 

gs [kg/(m s)] = 0.7226 x l0 -  5 + (2.768 x 10- 8)T s 

-(0.5933 x 10-12)T 2 

The expression for the specific heat capacity at constant 
pressure, Cp, was adopted from Sontag and Van Wylen 14 

Cp [-m2/(s 2 K)] = 1.3686 x 103 - -  (2.786 x 105)T~ - 1 

+(5.1741 x 107)T~ -2 

In the above expressions T s is in Kelvins. 
Five solid phases were chosen in order to numerically 

simulate the effect of nonuniformities of the solid particles on 
the flow field. Thus, in Equations 15 and 16, n = 5 and each of 
Equations 9 to 21 represents five equations with i = 1, 2 , . . . ,  5. 

Each solid phase is identified by three parameters. The 
diameter of its particles Di, the heat capacity of it particles C~, 
and their material density 0.~. 

Nine different cases (for Mo= 1.5) were investigated. They 
are shown in Tables 1 to 3. In Table 1 all the five solid phases 
have the same material density 0.~ = 0 2 . . . . .  0"5 = 0" and heat 
capacity C~ = C 2 . . . . .  C s = C but different particle diameters 
D~ = 5 pm, D E = 7.5 #m, D a = 10/~m, D 4 = 25 pm, and D 5 = 50/,m. 
The seven cases shown in Table 1 differ in the loading ratios 
of the various solid phases. 

The partial loading ratios r h are chosen in such a way that 
the total loading ratios for each case (i.e., rhota ~ = ~  rh) always 
equals 0.2. 

Thus, for all seven cases, the suspension properties should 
reach the same equilibrium values at the end of the relaxation 
zone. 

In the case shown in Table 2 also for M o = 1.5, the five solid 
phases have identical particle diameters D = 50/~m, and material 
densities 0. = 1500 kg/m 3, but different heat capacities: Cz = 100, 
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T a b l e  1 The loading ratios r/ of the various size particles for 
~r = 1500 kg/m 3 and C = 1000 J/(kg K) 

D~ x 10" [m]  Case number 

5 7.5 10 25 50 Mi 

i 1 2 3 4 5 1.5 

0.04 0.04 0.04 0.04 0.04 1 
0.03 0.04 0.06 0.04 0.03 2 
0.06 0.05 0.04 0.03 0.02 3 
0.02 0.03 0.04 0.05 0.06 4 
0.099 0.06 0.03 0.01 0.001 
0.001 0.01 0.03 0.06 0.099 6 
-- -- 0.20 - -  - -  7 

T a b l e  2 The specific heat capacities C of the five various solid 
phases 

C, [J / (kg K)] 

1 2 3 4 5 Case number 

100 500 1000 5000 10,000 8 

For all the solid phases M0=1.5,  D = 5 0 x  10-em, or= 1500kg/m% 
~/= 0.04. 

Tab le  3 The dust material densities ~5 of the five various solid 
phases 

c5 [kg/m 3 ] 

1 2 3 4 5 Case number 

1000 1250 1500 1750 2000 9 

For all the solid phases Mo= 1.5, D = 1 0 x  10-~m, 
C=  1000 J/(kgm K), ~ = 0.04. 

C 2 = 5 0 0  , C3=1000,  C4=5000 and Cs=10,000J/(kgK).The 
loading ratio of each solid phase is r/= 0.04 and therefore the 
total loading ratio is again 0.2. 

The last case is shown in Table 3. Here all the solid phases 
have identical particle diameters, D--- 10 #m, and heat capacities, 
C=1000  J/(kg K), but different material densities: 0-~=1000, 
az = 1250, 0" 3 = 1500, 0", = 1750, and 0"2 = 2000 kg/m 3. The inci- 
dent shock wave Mach number  is again Mo --- 1.5, and the total 
loading ratio is 0.2 (rh=0.04 for each solid phase). 

N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n s  

Dis t r i bu t ion  o f  the d iameter  o f  the dust  par t ic les 

Figures 2 to 7 illustrate the flow field properties which are 
developed behind a normal shock wave with M o = 1.5 in cases 
1 to 6, respectively (see Table 1). Each figure contains six 
velocity and six temperature profiles (one for the gaseous phase 
labeled with G and five for each of the five solid phases labeled 
1 to 5 in accordance with Table 1) and one pressure profile. 
The dashed lines in the right sides of Figures 2 to 7 indicate 
the equilibrium values at infinity, which should be approached 
asymptotically. As mentioned earlier, these values are calculated 
a priori. 

It is clear from Figures 2 to 7 that the larger the particle 
diameter is, the longer it takes for it to reach a dynamic 
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equilibrium. This is due to the fact that the inertia force depend 
on D 3, while the drag forces are roughly proportional to D 2. 
Thus the effectiveness of the drag forces in slowing down the 
solid particles decreases as the diameter of the solid particles 
increases. The solid phase with the larger particles is also the 
last to reach thermal equilibrium with the gaseous phase. This 
is not surprising since the larger the solid particle is, the slower 
will be its temperature rise. Thus the solid phase with the 
smallest particles (D = 5 #m) reaches a thermal equilibrium with 
the gaseous phase within a few centimeters, while it takes tens 
of centimeters for the solid phase with the largest particles. 

The velocity, temperature, and pressure profiles of the gaseous 
phase for cases 1 to 6 are shown in Figure 8. We clearly see 
that all six cases approach asymptotically identical equilibrium 
properties at infinity. This fact should not be surprising for the 
total loading ratio in all cases is r/= 0.2, and the heat capacity 
of the solid particles is the same. Although the equilibrium 
properties are identical, the flow properties inside the relaxation 
zone do depend on the size distribution of the particles of each 
solid phase. The dependence is minimal for the gas temperature 
where the six profiles merge into almost one curve, and it is 
maximal for the suspension pressure. The suspension pressure 
increases very sharply when it consists mainly of small particles 
(case 5), and it increases very slowly when it consists mainly 
of large particles (case 6). Thus it can be concluded that 
increasing the mass fraction of the small solid particles in the 
suspension results in a faster rise in the suspension pressure. 
Similarly, the suspension with the largest amount of small 
particles results in the sharpest decrease in the gaseous phase 
velocity. The suspension with the largest amount of large 
particles experiences the slowest decrease in the gaseous phase 
velocity. The gaseous phase velocity falls from its value 
immediately behind the shock front even though it exchanges 
momentum with the solid phases which have much higher 
post-shock velocities. The reason for this peculiar behavior is 
that the dust presence causes a very large increase in the density 
of the gaseous phase. This in turn results in a large decrease 
in the gaseous phase velocity since the flow field is one- 
dimensional and pgu must remain constant. 

The general shapes of the various property profiles, for the 
six cases of multisolid phases, are similar to those obtained 
when the suspension contains a single solid phase only, i.e., 
case 7 in Table 1, whose solution is seen in Figure 9. Since for 
this case r/=0.2 too, the equilibrium properties at infinity are 
identical to those shown in Figures 2 to 7. 
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Figure 9 Flow field for case 7 of Table 1 

T a b l e  4 The thermal, / T, and kinematic, / v, relaxation lengths for 
the nine cases in Tables 1, 2, and 3 

Initial condi t ion Case 
in table number I T (m) /y (m) 

1 1.91 3.83 
2 1.91 3.80 
3 1.90 3.75 

1 4 1.92 3.90 
5 1.89 3.72 
6 1.92 4.05 
7 0.13 0.31 

2 8 37.18 10.4 

3 9 0.162 0.39 

The thermal and kinematic relaxation lengths for cases 1 to 
7 are given in Table 4. The earlier remark that the temperature 
of the gaseous phase is almost unaffected by the size distribution 
of the particles of the solid phases (see Figure 8, where all the 
temperature profiles merge into a single line at a very short 
distance behind the shock fronts) is further supported by the 
fact that the thermal relaxation lengths l x is almost the same 
for the six multiphase cases. 

The difference between the kinematic relaxation lengths Iy is 
much larger. The two extreme cases, 5 and 6, differ by about 
8.5%. Note that the difference in the thermal relaxation length 
between the two extreme cases is only about 1.5%. 

However, the difference in both the thermal and kinematic 
relaxation lengths between the multisolid phases (cases 1 to 6) 
and the single solid phase (case 7) is enormous. Both I x and ly 
are more than 90% smaller when the suspension contains a 
single solid phase with D=10/~m. It is obvious that the 
enormous increase in both I x and 1v when the suspension 
contains a size distributed solid phase arises from the presence 
of the large particles, D = 50/~m, in the six cases. This is due 
to the fact that the large particles slow down and heat up very 
slowly in comparison with smaller particles. Thus it can be 
concluded that the extent of the relaxation zone is determined 
solely by the solid particle having the largest diameter. 

Distr ibut ion o f  the heat capacity o f  the dust part icles 

Case 8 (Table 2), in which the solid particles of the five phases 

have identical diameters D = 50#m and material density tr= 
1500kg/m 3 but different heat capacities C is shown in Figure 
10 for M0 = 1.5. 

It is evident from Figure 10 that although the heat capacity 
C of each of the solid phases is different, they all have the same 
velocity and pressure inside the relaxation zone. Thus, the heat 
capacity has no affect on the velocities of the solid particles 
and the gaseous phases and does not affect the suspension 
pressure. However, the five solid phases have different tempera- 
ture profiles. The temperature of the solid particles with the 
highest value of C experiences the slowest increase. For  the 
smallest value of C the temperature rise of the solid particles 
is extremely sharp. It overshoots the temperature of the gaseous 
phase before it drops down to the equilibrium value at infinity. 

The thermal and kinematic relaxation lengths IT and/v ,  are 
also shown in Table 4 for this case (case 8). The large values 
for l T arise because it takes a long time for the solid phase with 
the largest heat capacity to reach equilibrium with the gaseous 
phase because their temperature rise is very slow. The large 
values for the kinematic relaxation length are due to the fact 
that the diameter of all the solid particles was chosen to be 
D = 50/~m for this case. 
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Figure 11 Flow field for  case 9 of Table 3 
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Distr ibut ion of  the material density of  the dust particles 

Case 9 (Table 3) in which the solid particles of the five phases 
have identical diameters D =  10/~m and heat capacities C =  
1000 J/(kg K) but different material densities is shown in Figure 
11 for Mo = 1.5. Case 7 which has identical values of D and C, 
as well as the total loading ratios of r/=0.2, but a constant 
value of tr = 1500 kg/m 3, is added to Figure 11 in dashed lines. 

The solid lines in Figure 11 indicate that the distribution in 
the solid particles density results in a decrease in the gas 
pressure, temperature, and velocity gradients behind the shock 
front. The equilibrium values, however, at infinity are identical 
for the two cases. In addition, it is evident from Figure 11 that 
the larger the material density of the dust particles is, the slower 
its decay becomes. This is so because its inertia depends linearly 
on the material density. Similarly, the larger the material density 
of the dust is, the slower its temperature rise becomes, because 
it has a higher heat capacity. The effect of the distribution in 
the material density of the dust particles on It and I v can be 
seen by comparing cases 7 and 9 in Table 4. For  the M o = 1.5 
case (7 and 9) both lr and I v increase by about 25%. 

Particle nonuniformities on the flow fie~d: D. Elata et al. 

suspension contains mostly small particles. Similarly, the 
suspension with the largest amount of small particles results in 
the sharpest decrease in the velocity of the gaseous phase. 

A distribution in the heat capacity of the solid particles 
resulted in a minor effect on the velocity of the solid particles 
and practically no effect on the suspension pressure. The effect 
on the temperature of the solid particles was much more 
pronounced. As expected, the particles with the smaller heat 
capacity were heated faster and their temperature reached that 
of the gaseous phase earlier than those having larger heat 
capacities. 

A distribution in the material density of the solid particles 
resulted in different velocity and temperature profiles for each 
of the five solid phases and a slower rise in the suspension 
pressure. 
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Conclusions 

The flow field which is developed behind a steady normal shock 
wave in a dust-gas suspension has been solved numerically 
while accounting for distributions of nonuniformities in the 
physical properties of the solid phase. The model was based 
on a multiphase system which consists of one gaseous phase 
and five solid phases. The five solid phases differed from each 
other by one physical property only, which was either the 
diameter of the solid particles or their heat capacity or their 
material density. 

For a fixed total loading ratio it was found that the gas 
temperature profile downstream of the shock wave is practically 
independent of the size distribution of the dust particles. This 
might also be a result of the relatively small loading ratio which 
was used in the calculation. Consequently, it should not 
necessarily hold for an arbitrary loading ratio. The suspension 
pressure profile, however, is very sensitive to the size distri- 
bution. The suspension pressure rises very sharply when the 
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